Poradniki
Głębokie uczenie. Wprowadzenie
Głębokie uczenie. Wprowadzenie
Nasza cena:
22,80 PLN
Cena detaliczna: 57,00 PLN
Oszczędzasz: 60% (34,20 PLN)
Autor:praca zbiorowa
Rok wydania:2022
Format:235 x 158 mm
Ilość stron:184
Oprawa:broszurowa
Najniższa cena z 30 dni:22.80 PLN
EAN:
9788328385412
Status:
Szanowny kliencie towar został
wyprzedany
wyprzedany
Opanuj podstawy uczenia maszynowegoOd mniej więcej piętnastu lat jesteśmy świadkami rewolucji w nauczaniu maszynowym na niesamowitą skalę. Rewolucji tej sprzyja intensywny rozwój głębokich sieci neuronowych oraz niezbędnego do tego sprzętu obliczeniowego, takiego jak karty graficzne. Deep learning , machine learning - te słowa klucze rozpalają wyobraźnię programistów, innowatorów i przedstawicieli przemysłu na całym świecie. Także studentów kierunków politechnicznych. Na świecie wydaje się sporo literatury poświęconej tym zagadnieniom, w Polsce niestety mamy pod tym względem deficyt.
Niniejszy podręcznik, pomyślany jako wprowadzenie do tematu uczenia głębokiego, ma z założenia uzupełnić tę lukę. W związku z tym opracowany został w sposób umożliwiający zrozumienie zawartych w nim treści także osobom, które nie zetknęły się dotąd nawet z klasycznymi metodami nauczania maszynowego. Stąd sporo miejsca autorzy poświęcają podstawowym konceptom klastrowania, klasyfikacji oraz regresji. Druga połowa książki przybliża głębokie odpowiedniki modeli klasycznych - z naciskiem na objaśnienie podstawowych pojęć i ich intuicji. Ponieważ dla pełnego zrozumienia modeli niezbędne jest ich zaimplementowanie, integralną część książki stanowi kod, dostępny dla czytelnika na platformie GITHUB.
Niniejszy podręcznik, pomyślany jako wprowadzenie do tematu uczenia głębokiego, ma z założenia uzupełnić tę lukę. W związku z tym opracowany został w sposób umożliwiający zrozumienie zawartych w nim treści także osobom, które nie zetknęły się dotąd nawet z klasycznymi metodami nauczania maszynowego. Stąd sporo miejsca autorzy poświęcają podstawowym konceptom klastrowania, klasyfikacji oraz regresji. Druga połowa książki przybliża głębokie odpowiedniki modeli klasycznych - z naciskiem na objaśnienie podstawowych pojęć i ich intuicji. Ponieważ dla pełnego zrozumienia modeli niezbędne jest ich zaimplementowanie, integralną część książki stanowi kod, dostępny dla czytelnika na platformie GITHUB.
Egzemplarze powystawowe - mogą zawierać zbite rogi, rozdarcia, przybrudzenia, rysy.